Design, Development and Simulations of MHD Equations with its proto type implementations

نویسندگان

  • Rajveer S Yaduvanshi
  • Harish Parthasarathy
چکیده

The equations of motion of conducting fluid in a magnetic field are formulated. These consist of three sets. First is the mass conservation equation, second Navier Stokes equation which is Newton’s second law taking into account the force of magnetic field on moving charges. The electrical field effects are neglected as is usually done in MHD. The third set is Maxwell’s equation especially to monopole condition along with Ampere’s law with the current given by ohm’s law in a moving frame (the frame in which the moving particles of fluid is at rest).The mass conservation equation assuming the fluid to be incompressible leads us to express the velocity field as the curl of a velocity vector potential. The curl of the Navier Stokes equation leads to the elimination of pressure, there by leaving with an equation involving only magnetic field and the fluid velocity field. The curl of the Ampere law equation leads us to another equation relating to the magnetic field to the velocity field. A special case is considered in which the only non vanishing components of the fluid are the x and y components and the only non vanishing component of the magnetic field is z component. In this special case the velocity vector potential only has one non zero component and this is known as stream function. The MHD equation in this reduces to three partial differential equations for the three functions in 2D model. Ψ stream function embeds and components. Application of MHD system prototype has been worked and presented. KeywordsLorentz force, Navier Stokes Equation, Maxwell’s Equation, Iterative Solution, Prototype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theoretical Study of Steady MHD mixed convection heat transfer flow for a horizontal circular cylinder embedded in a micropolar Casson fluid with thermal radiation

In this study, an investigation is carried out for laminar steady mixed 2D magnetohydrodynamic (MHD) flow of micropolar Casson fluid with thermal radiation over a horizontal circular cylinder with constant surface temperature. In the present study, an investigation is carried out on the effects of physical parameters on Casson fluid non dimensional numbers. The governing nonlinear partial diffe...

متن کامل

Proto-Plasm: parallel language for adaptive and scalable modelling of biosystems

This paper discusses the design goals and the first developments of PROTO-PLASM, a novel computational environment to produce libraries of executable, combinable and customizable computer models of natural and synthetic biosystems, aiming to provide a supporting framework for predictive understanding of structure and behaviour through multiscale geometric modelling and multiphysics simulations....

متن کامل

شبیه‌سازی عددی جریان دوبعدی در ژنراتور هیدرودینامیک مغناطیسی مقطع ثابت فروصوت و بررسی اثر آن بر عملکرد سیکل ترکیبی سه‌گانه

In this research, Magneto-Hydro-Dynamic subsonic flow in a MHD generator has been simulated and its effect on efficiency and power generation of a triple cycle has been investigated. A 2D constant cross-section Faraday channel with segmented electrodes was used as MHD generator. MHD flow was assumed steady and compressible with ideal five-wave model MHD equations. Navier-Stokes equations were ...

متن کامل

Brenstien polynomials and its application to fractional differential equation

The paper is devoted to the study of Brenstien Polynomials and development of some new operational matrices of fractional order integrations and derivatives. The operational matrices are used to convert fractional order differential equations to systems of algebraic equations. A simple scheme yielding accurate approximate solutions of the couple systems for fractional differential equations is ...

متن کامل

Study of MHD Second Grade Flow through a Porous Microchannel under the Dual-Phase-Lag Heat and Mass Transfer Model

A semi-analytical investigation has been carried out to analyze unsteady MHD second-grade flow under the Dual-Phase-Lag (DPL) heat and mass transfer model in a vertical microchannel filled with porous material. Diffusion thermo (Dufour) effects and homogenous chemical reaction are considered as well. The governing partial differential equations are solved by using the Laplace transform method w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010